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Formation of a viscous boundary layer on the free surface 
of an imploding rotating liquid cylinder 
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(Received 23 March 1978) 

The effect of viscosity on the inner free surface of a rotating imploding cylindrical 
liquid shell compressing an ideal gas or magnetic flux load is analysed in the limit of 
high Reynolds number Re. The condition of vanishing tangential stress on the free 
surface leads to the formation of a boundary layer of thickness - Re-4. Within this 
layer the zonal velocity v is reduced by an amount Av such that Av/v N Re-4. 
This results in a requirement of slightly increased rotation in order to satisfy the 
criterion for suppression of the Rayleigh-Taylor instability on the free surface. Cal- 
culations are presented for a model implosion trajectory. 

1. Introduction 
When a hollow rotating viscous incompressible fluid cylinder is imploded, the 

tangential shear stress distribution changes with time as a result of the competition 
between advection of angular momentum and viscous diffusion. If the radial implosion 
begins from a state of solid body rotation, viscous diffusion of angular momentum 
vanishes locally except for boundary effects which must diffuse from the solid 
boundaries or free surfaces which define the liquid cylinder. Implosions which are 
rapid on the scale of the viscous diffusion time can therefore be expected to display 
boundary layer character, with viscous effects concentrated within these layers. In  
regions far from the boundaries, angular momentum is conserved. The steady-state 
behaviour of viscous cylindrical rimming flows in a gravity field has been studied by 
Karweit & Corssin (1975), Ruschak & Scriven (1976) and Orr & Scriven (1978). Their 
results are to be contrasted with those of the present work in which we consider trans- 
ient flows, in the absence of gravity, associated with an imploding cylindrical free 
surface. 

Currently there is a great deal of interest in systems which achieve high energy 
densities through cylindrical implosions. Examples are axial flux compression ex- 
periments, surveyed by Knoepfel (1970), attempts to induce the transition to the 
metallic state in hydrogen (Grivorev et al. 1972), and concepts for the production of 
thermonuclear plasmas using solid (Alikhanov et al. 1977) or liquid (Book et al. 1977) 
metal shells (liners). This last is at present the subject of an experimental programme 
at the Naval Research Laboratory. 

A distinctive feature of the devices employed in the NRL experiments is that they 
are designed to implode and rebound stably, in a repetitive fashion. To achieve this it 
is necessary to forestall the development of the Rayleigh-Taylor instability at both 
the inner and outer surfaces of the liner. The inner free surface can be stabilized 
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throughout the entire liner trajectory by imposing sufficient rotation about the 
cylinder axis, which introduces a centripetal acceleration opposing R,  while the outer 
surface remains in contact with a set of axial or radial pistons driven by high pressure 
gas. This combination of rotation and hydraulic piston implosion leads to liners which 
are theoretically stable against Rayleigh-Taylor modes. 

While rotational stabilization of the inner free surface has been demonstrated 
theoretically by Barcilon, Book & Cooper (1974) for an ideal inviscid liner and estab- 
lished experimentally (Turchi e t d .  1976; Burton et al. 1977), the precise role of real liner 
fluid viscosity has remained an open question. In this paper we study the effects of liner 
viscosity on the motion of a cylindrical rotating imploding liner in the realistic limit 
of large Reynolds number (experimental Reynolds numbers Re of the order of 2 x lo4 
typical). We find that viscous effects are concentrated in a thin boundary layer at the 
free surface whose thickness is of the order of Re-4. The bulk of the liner behaves 
essentially inviscidly. Within the viscous boundary layer, the rotational speed of the 
liner a t  the free surface is reduced from that which would occur inviscidly. The 
boundary layer thickness and reduction in angular velocity are determined as quadra- 
tures of the basic state trajectory, R(t).  Numerical results are obtained for a prescribed 
model radial trajectory and presented as a function of the compression ratio and 
Reynolds number. 

2. Analytical treatment 
The liquid liner is assumed to undergo a flow in the r ,  4 plane corresponding to the 

motion of an infinite hollow cylinder which is imploding while rotating about its axis. 
Rotation is necessary both for the initial formation of the liner and to stabilize against 
the Rayleigh-Taylor instabilities near the inner turning point. In  this study we will 
concentrate on the inner free surface and, without any essential restriction in the 
physics, will consider the liner to be infinitely thick. 

The following assumptions are made: 

(1) The liner is launched from a state of rigid rotation with angular velocity a,, at 

(2) The liner is incompressible (constant density p).  

(3) The liner kinematic viscosity Y is constant, 

(4) The flow is laminar. 

(5 )  The flow is one-dimensional 

(6) Surface tension is neglected. 
Incompressibility of the liner in this case implies 

time t = 0. 

a - = - = 0) . (G a% 

a(ru)/ar = 0'. (1) 

where u(r, t )  is the radial velocity component. The radial component of the Navier- 
Stokes equation governs the radial motion, 

where v(r ,  t )  is the zonal velocity and p(r ,  t )  is the pressure. The angular momentum 
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FIGURE 1. Geometry of the model used to study viscous effects at the free surface 
imploding liner. 

of t3 rotating 

equation, which is formed from the zonal component of the Navier-Stokes equation, 
is given a.s 

Substitution of (1) into (2) reveals that the right-hand side of the radial momentum 
equation vanishes. Viscous effects on the radial motion arise only through coupling 
with the zonal momentum equation (3) by virtue of the centripetal acceleration term 
- w2/r. An additional viscous effect arises at  the free surface, where the normal stress 
is balanced. This will be discussed later in the paper when we consider the boundary 
conditions. 

The coupled equations (1)-(3) should be solved consistent with proper initial and 
boundary conditions to obtain u(r, t ) ,  w(r, t )  andp(r, t ) .  In  order to emphasize the main 
physics of this problem in its most simple form, we will instead consider the radial 
trajectory of the liner to be prescribed, andgenerate consistent solutions to the angular 
momentum equation. The viscous evolution of the angular momentum distribution is 
direct, while the viscous effects upon the radial velocity field are mainly a result of 
the coupling to the zonal equation through the centripetal acceleration term. 

( A )  Radial trajectory 
We therefore consider a prescribed radial trajectory defined by the motion of the 
free surface radius 

R = R(t/t,;s), (4) 
11-2 
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where to, the hydrodynamic time, is characteristic of the throw time (time required 
to go from the initial radius R, E-4 to the minimum radius R,), and €4 represents the 
ratio of minimum to maximum radius (compression ratio). These dimensions and 
parameters are indicated in figure 1. 

Integrating the continuity equation (1) we obtain 

ru = RdR/dt = K(t) ,  ( 6 )  

i.e. ru is a constant throughout the liner at any given time t. Therefore, the specifica- 
tion of the free surface trajectory, (4), completely defines the entire radial velocity 
field of the liner. 

(B)  Initial and boundary conditions 
We desire a solution to (3) with the prescribed trajectory given by (4). Since the liner 
is launched from a rigid rotation state with angular velocity R,, the initial condition 
on the angular momentum a(r, t )  = rw is 

a(r, 0)  = rQ,, r 2 Roe-+. (6) 

A suitable boundary condition must also be applied at the free surface, r = R(t).  
The free surface is an interface between the liquid and a gars, magnetic field or magnetic 
field-plasma mixture. In  any case, there should be negligible tangential shear stress 
u at the free surface, and the normal stress in the liquid liner ahould be in balance 
mth  the material and/or magnetic pressure p of the interior volume there. Therefore 
at the interface, 

9 

p - 2vp au/ar = pi. ( 8 )  

The vanishing of the tangential shear stress prescribed by (7) implies that at r = R(t) 
the angular momentum satisfies 

a = Cr2. (9) 

Thus the zonal velocity field is locally that of a rigid-body rotation with arbitrary 
angular velocity given by the integration constant C, which is in general a function of 
time. 

We notice that the boundary condition, (7), is satisfied by the initial condition, 
(6), which specifies that the liner is launched from a state of rigid rotation. 

Equations (6) and (7) provide one initial condition and one boundary condition for 
the angular momentum equation, (3). An additional boundary condition is required 
since we have a second-order partial differential equation in r .  This second boundary 
condition arises as a far-field condition in the liner for r > R. To see this more clearly, 
we observe that the inviscid solution (v = 0) of (3), subject to the initial condition, 
(6)) satisfies the full viscous equation, but not the boundary condition, (7). We there- 
fore anticipate that far from the free surface, r B R, the liner will behave inviscidly. 
A viscous boundary layer will exist at the free surface which recovers the boundary 
condition, (7)) at the free surface and matches with the inviscid solution in the interior 
of the liner. This matching condition provides the second required boundary condition. 

Figure 2 illustrates the nature of this viscous boundary layer. The liner is shown 
launched at time t = 0 with a solid-body rotation R, corresponding to that of the 
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FIQIJRE 2. Schematic representation of the viscous boundary layer at the free surface of the liner, 
showing the reduction in surface zonal velocity resulting from the condition of zero tangential 
shem stress. Q = tan fi and Q, = tan fro. 

apparatus. The liner is also depicted at a later time t ,  after it has imploded to a radius 
R(t).  The inviscid zonal velocity variation appropriate a t  that time is indicated by the 
solid line. This variation corresponds to conservation of specific angular momentum rv 
for each of the fluid lamellae composing the liner. The viscous layer or boundary 
layer correction is shown in the region d by means of the dashed line. The viscous 
solution satisfies the stressless condition at the surface and matches with the inviscid 
distribution in the interior. Viscosity is seen to slow down the liner interface zonal 
velocity. This is important, as we rely on the strong zonal motion of the inside surface 
in the vicinity of the turning point to stabilize against Rayleigh-Taylor instabilities. 

(0) LagPangian variablee 
Because of the motion of the free surface and the inherent competition between 
convection with geometric convergence and diffusion displayed in (3), it is more 
convenient to transform to Lagrangian variables. We therefore take 

6 = ra-B*(t), (10) 
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which is proportional to the displaced area relative to the moving interface and is 
conserved for fluid shells in an incompressible liner. This transformation has been 
used previously in a related problem by Cooper & Book (1978). 

The angular momentum equation for a = A ( [ ,  t )  becomes 

with initial and boundary conditions 

aA A (0’ t )  - (0,t)  = - R2(t) ’ 

and for 6 --f 00, 4 5 ,  t )  [5 + R2(0)l Qo. (14) 

Equation (14) requires that the solution match with the inviscid solution far into the 
liner. 

(D)  I?m-dimemion.di&iim 
The dependent and independent variables are normalized as follows : 

B = AIR: Qo, t = t / to ,  R = R/Ro, g = [ /R$ 

Two dimensionless parameters characterize the problem : 

8 = Ri/R2(0), Re = R8/4vt0. (1% (17) 

Re, a Reynolds number, represents the ratio of the diffusion time 4/4v to the hydro- 
dynamic time associated with the prescribed radial motion, to. Since this is a boundary 
layer problem, we anticipate that the viscous zone will scale as Re-4. As previously 
defined, E is an inverse compression ratio representing the ratio of the final compression 
area to its initial value for the prescribed trajectory. In  terms of these non-dimensional 
variables, the relevant equations and initial and boundary conditions become 

iG?/at = Re-l[R2(t) + g] a2B/8E2, (18) 

and a(g,t) - g +  l/€ (21) 

at large 5. Here B(t) describes the liner trajectory, which may be either measured or 
calculated. For a given R(f), finding a solution to (18)-(21) valid throughout Re+ 
parameter space represents a formidable task. For large values of Re, the situation is 
significantly simplified. This limit is also of practical interest, as the Reynolds numbers 
associated with magnetic compression using liquid metal liners are of the order of 

( E )  Aqmptotic theory ad large Reynolds number 
We concentrate on the large-Reynolds-number portion of the Re-e parameter space. 
In  particular, we seek the behaviour of (18)-(21) in the foUowing asymptotic limit: 

2 x 104. 

Re4  < 1, (22) 
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and will apply the methods of matched asymptotic analysis to (18)-(21), taking 
advantage of the small parameter Re-*. Henceforth, we omit the tilde from dependent 
and independent variables, with the understanding that all variables are dimensionless. 

(a) Outer solution. We expand the angular momentum A in a regular perturbation 
expansion in terms of the small parameter Re-*. 

A(l , t;Re,e) N A(o) ( f , t ;~ )+Re~A(I ) (E , t ; s )+  ... . (23) 

To lowest order in Re+, (18)-(21) become 

with 

and 

a t  large 5. The solution to (24) which satisfies (25) and (27) is 

A‘O’([,t;E) = E +  l/s. (28) 

This solution does not, however, satisfy the required stressless boundary condition, 
(26). We therefore have the ingredients for a classical boundary layer. It is necessary 
to rescale the independent variable 5 to recover the missing boundary condition and 
resolve this layer. 

(b )  Inner solution. The necessary stretching of E is given as 

q = Re*[, (29) 

A^= A(7 , t ; s ) .  (30) 

and the dependent variable is written as 

In  terms of (29) and (30), the governing equations, (18)-(21), become 

a 2  A (0, t )  - (0,  t )  = Re-) - 
a7 R2(t) ’ (33) 

A^(q,t) - l/e+qRe-*, 7 B 1. (34) 

The initial and boundary conditions satisfied by (32) and (34) are evidently the 
inner representation of the inviscid outer solution and satisfy the differential equation, 
(31). It is therefore convenient to define a new angular momentum variable by means 
of 

B(q, t ;c) represents the viscous correction to the solution. Equations (31)-(34) become 

A(7, t ; s) = A^(q, t ; e )  - ( 1 /s + vRe-*). (35) 
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and (39) 

We now expand 3 as a regular perturbation expansion in powers of the small 

B(q, t ;  Re, e) - B(O)(q, t ;  E )  + R e 4  B(l)(q, t ;  e) + . . . . (40) 
parameter R e d .  

To lowest order in Re-4 we find that 

and to next order we obtain 
@) = 0, 

aB(l)/at = R2(t) a2X(’)/av2 

and 

Defining a new timelike variable, the age, 

(45) 

reduces (42) to a diffusion equation which is identical to that governing diffusion in a 
slab, 

It should be borne in mind that 7 is a dimensionless area and B is a stretched time 
variable which is weighted over the trajectory. That is, even though (47) has the form 
of a slab diffusion, it still includes effects of geometric convergence consistent with the 
liner motion asymptotically correctly for the large Reynolds number limit considered 
here. 

aXu)/ae = a 2 j i ( l ) / @ 2 .  (47) 

The solution to (47) with the conditions of (43)-(45) is written as 

Equation (48), the viscous correction to the angular momentum, is given as a quadra- 
ture over the basic state trajectory R(T).  That is, J(l) is a function not only of the 
compression ratio e,  but of the details of the full trajectory in terms of the age defined 
in (46). 

Thus the angular momentum distribution is from (36) and (48) 
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Of particular interest is the angular momentum at the free surface. This is basic to 
stabilization of the Rayleigh-Taylor instability which could occur near the inner 
turning point t = to. Taking r] --+ 0 we find 

1 
A(0, t ;  Re, E )  N - - Re-* 

8 

Therefore, the angular velocity of the free surface is given as 

or 

where Qinv = Cl0/~R2 is the inviscid surface angular velocity. The reduction in angular 
velocity of the free surface from its inviscid value is seen to scale as Re-*. 

We next investigate the question of the uniform validity of our asymptotic analysis. 
Since (47) is in the form of a semi-infinite slab diffusion problem with homogeneous 
initial and boundary conditions at infinity, the solution represented by (48) displays 
viscous effects concentrated in a boundary region whose effective thickness scales as 

( r ] )  [W)l*. (53) 

r]Re-* - (8/Be)). (54) 

Therefore, we see that the higher order curvature term in (36) will provide a correction 
which scales as 

Comparing this term to R2(t), the term retained in lowest order in (36), we find the 
condition for uniform validity of the lowest order asymptotic expansion 

(B(t)/Re)* 6 B2(t). (55 )  

This condition is most stringent a t  turnaround, t = 1, where B2(t) is minimum. There 
it takes the form 

B*(l,e) 6 Re*. (56) 

This provides a restriction on the magnitude of E as a function of Re for uniform 
validity of the asymptotic analysis. The age 8, defined by (46) as a time integral over 
the basic trajectory R2(t) is a function of both t and E .  R2(t) varies from e-l to 1 as t 
varies from 0 to 1. Therefore, 

1 < J: R2(t) dt = 8 < e-l. (57) 

By (56) and (57) we see that as a maximum constraint on E we have 

E p Re-I. ( 5 8 )  

For trajectories which are sufficiently flat near turnaround this restriction on E is 
overly severe, and our results should remain valid for arbitrary E c 1.  Physically, 
the restriction on E is to ensure that the boundary layer thickness remains small 
compared with the instantaneous free surface radius. 



314 A ,  L. Cooper and D.  L. Book 

0.8 

0.7 

0.6 

0.5 - 
. _  ." v 

'I 

0.4 - 

0.3 - 

0.2 - 

0.1 - 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1 4  2.0 
t 

FIQ~RE 3. Coefficient of the viscous correction to surface zonal velocity v8. time for various 
compression ratios. 

3. Numerical results 
In  this section, the general formulas derived in the previous section are specialized 

to a particular prescribed liner trajectory and the results of evaluating the required 
quadratures are discussed. Special emphasis is placed on the viscous perturbation of 
the free-surface angular velocity, since this quantity is most important in ensuring 
stable and well controlled liner implosions, We consider a ' parabolic ' trajectory 

R2(t ; I?) = 1 + ( 1 / E  - 1 )( 1 - q 2 .  (59) 

It can be shown that this type of trajectory represents a realistic limit of a thin freely 
launched liner, A / R  < 1, where A is the liner thickness. The numerical results to be 
presented in this study will be associated with this trajectory. For strict consistency 
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FIQURE 4. (a) Plot of the viscous correction coefficient [equation (62)] a t  turnaroundf( 1 ; E) v8. E .  

(a) Plot of cf f (1 ; E), showing the asymptotic behaviour f( 1 ; 8)  - €4 a t  small 8. 

with our previous approximation that the outer radius is a t  infinity, it is necessary 
that viscous effects be confined to a layer of thickness b << A. 

The integral in (62) was evaluated numerically. The integration variable was taken 
to be t instead of 0, using the transformation d0 = dt(dO/dt) and evaluating d0/dt by 
(46). Dividing the range of integration into 104 equal-time intervals and using the 
trapezoid rule yielded results accurate to - 1%. Landen's transformation (Abramo- 
witz & Stegun 1970, p. 697) was used to evaluate the incomplete elliptic integral 
which results when parabolic trajectories [equation (59)l are employed in (52). 

In figure 3, the viscous correction to the free surface angular velocity, f, aa defined 
in (52), is plotted as a function of time for various values of 8. The viscous reduction 
in surface angular velocity is seen to evolve from zero at  t = 0 and increase with time, 
slowly at first, and then rapidly near the inner turning point, t = 1. The maximum 
value, of order 1 in all cases, is obtained shortly after the turning point for this model 
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trajectory. As the liner moves outward toward its maximum radius at t = 2, the 
correction decreases. The correction does not vanish entirely, however, even at t = 2 
when the liner has returned to its initial radius. Figure 3 shows that there is significant 
e dependence in the effects produced by finite viscosity. In  particular, we see that f 
tends to decrease as e + 0. It can be shown in this limit that for t -+ 1, 

while at t = 1 

provided inequality (58)  continues to hold. 
At turnaround, t = 1, where rotational stabilization is most critical, 

Jim c ) f (  1 ; s) = 2.44. 
6-0 

Therefore from (52), at t = 1, 

(Qinv - Q)/Qinv - N 2.44Redd = 2.44(Re);$, (63) 

(Re),,, = Ro12,ax/4do (64) 
where 

is an effective Reynolds number related to both the minimum (R,) and maximum 
(Rmax) radii of the trajectory. 

But it is also clear that 
limf(t;s) = 0. (65) 
6+1 

The behaviour in both limits is shown in figure 4 (a), where we plot the surface angular 
velocity correction at t = 1 as a function of e. Figure 4(b) shows the same curve, 
scaled by e-4 to exhibit the asymptotic dependence of (61). 

cm2/s. Taking to 21 iO-3s, 
R, = 1 cm and e = 10" yields (Re),-$= Thus the relative change in surface 
angular velocity due to viscous effects is always less than one per cent in cases of 
practical interest. 

For liquid alkali metals, a typical viscosity is v N 

4. summary 
Viscous effects for imploding liners at large ratios of viscous diffusion time to 

hydrodynamic time (high Reynolds number) are confined to thin boundary layers 
near the stressless free surface. The boundary layer thickness scales as Re-4, with the 
interior region of the liner behaving inviscidly . The resulting problem has been solved 
by the methods of matched asymptotic analysis. A boundary layer structure has been 
obtained which satisfies an equation identical to those associated with one-dimensional 
slab diffusion while properly including the effects of geometrical convergence. The 
results obtained indicate that the free surface angular momentum is reduced from its 
inviscid value by an amount proportional to Red.  

This work was supported by the U.S. Department of Energy and the U.S. Office 
of Naval Research. 
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